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OPTIMIZATION OF THE SHAPES OF OBSTACLES

IN JET- SEPARATION FLOW

UDC 517.958V. N. Monakhov1,∗ and E. V. Gubkina2

The model of an ideal incompressible fluid is used to study the solvability of optimal control problems
for the shape of a nozzle which discharges free-boundary fluid flow with and without accounting for
gravity (internal aerodynamics) and shape optimization problems for an obstacle with jet separation
(external aerodynamics). The qualitative properties of such flows are studied.
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In 1935, Lavrent’ev, using the variational principles of conformal mappings he developed, showed that for
ideal-fluid jet flow over convex arcs, a circular arc has the maximum lift force [1, pp. 405–449]. The optimal control
of solutions of elliptic equations for a wide range of target functionals is considered in [2].

Problems of controlling the nozzle shape or the shape of an obstacle in supersonic fluid flow have been the
subject of extensive research [3, 4]). Such problems allow one to use analogs of the Pontryagin principle and thus
to design algorithms of their numerical solution.

1. JET FLUID FLOW FROM AN OPTIMAL NOZZLE

1.1. Formulation of the Problem. Let an incompressible fluid discharge from a polygonal nozzle P0 =
(z0, . . . , zn−1) with vertices zk = xk + iyk and vertex angles αkπ onto an infinite rectilinear confining layer P1 =
(zn, zn+1) (yn+1 = 0, xn = −∞, and xn+1 = ∞). In this case, the segment P2 = (zn−1, zn) is a horizontal straight
line (yn−1 = yn = H) (see Fig. 1). In the domain D bounded by the polygon P = (z0, . . . , zn+1) = P0 ∪P1 ∪P2 and
the unknown curve (jet) L = (zn+1, z0), ∂D = P ∪ L, we seek a complex flow potential w(z) = ϕ+ iψ (an analytic
function of the variable z = x+ iy) that satisfies the boundary conditions

ψ = 0, z ∈ P1, ψ = Q, z ∈ P0 ∪ L,
∣
∣
∣
dw

dz

∣
∣
∣ = 1, z ∈ L, (1)

where Q = const > 0 is the required flow discharge.
The derivatives of the conformal mappings w: K → D∗ and z: K → D of the unit semicircle K = {ζ:

|ζ| < 1, Im ζ > 0} onto the strip D∗ = {w: 0 < Imw < Q} and the domain D, respectively, are represented, as
follows [5, p. 178]:

dw

dζ
= N0(1 − ζ2)

n+1∏

k=n

[(ζ − tk)(1 − ζtk)]−1 ≡ N0ω(ζ),
dz

dζ
= N0ω(ζ)

n−1∏

k=1

( ζ − tk
1 − ζtk

)βk

. (2)
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Fig. 1. Diagram of jet fluid flow from the nozzle.

Here tk (t0 = −1 < t1 < . . . < tn < tn+1 = 1) are the preimages of the vertices zk of the polygon P under the
conformal mapping z = z(ζ), βkπ = (αk − 1)π are the external angles for zk, and N0(Q) = const > 0.

1.2. Equations for the Parameters. We fix the points z0 = ih0 and zn−1 = xn−1 + iH [h0, H , and xn−1

(−∞ < xn−1 < 0) are known constants].
For the polygons P0 = (z0, . . . , zn−1), we introduce the geometric characteristic p0 = (l, β), l = (l1, . . . , ln−1),

lk = |zk − zk−1|, and subject it to the simple polygon conditions (p0, P0) ∈ G(δ):

G: δ − 1 ≤ βk ≤ 1, | ln lk| ≤ δ−1, k = 1, n− 1 (0 < δ � 1). (3)

The parameters N0 and tn in (2) are specified, and the constants tk corresponding to the finite tips zk ∈ P0

(k = 1, n− 1) are found as solutions of the nonlinear system of equations [5, p. 162]:

lk =

tk∫

tk−1

∣
∣
∣
dz

dt

∣
∣
∣ dt ≡ gk(T, β), k = 1, n− 1.

Here T = (t1, . . . , tn−1), β = (β1, . . . , βn−1), and βkπ = (αk − 1)π are the external angles for zk ∈ P0.
The solvability of the system of equations for T was established in [5] using the continuity method with the

inclusion T ⊂ R being proved:

R: tk+1 − tk > ε(δ) > 0, k = 0, n. (4)

The system of equations for tk is written as one functional equation

l = g(T, β), (l, β) ∈ G, g = (g1, . . . , gn−1). (5)

With the satisfaction of the additional constraint

0 < δ ≤ |θ(t) − β| ≤ π − δ, θ = arg
dz

dt
, |t| ≤ 1 (6)

on the rotation of the tangent to the polygon P0 (β is a certain angle) for the Kirchhoff model [5, pp. 153–156] and
Ryabushinskii model [6], it was proved that the solutions T of Eq. (5) are locally unique:

∣
∣
∣
Dg

DT

∣
∣
∣ ≥ ε0(δ) > 0. (7)

Here Dg/DT = {∂gi/∂tj} is a Jacobi matrix. It was established in this case that if among the polygons P0 there
is a polygon P 0

0 for which the solution of Eq. (5) is unique, it is also unique for any finite polygon P0 ∈ G. In
this case, as P 0

0 one can use a straight-wall nozzle P 0
0 = {y = y0, −∞ < x < x0}, for which Eq. (5) is satisfied

automatically for any partition of P 0
0 by the points zk = xk + iy0, k = 1, n− 1, |zk+1 − zk| �= 0,∞. The validity of

the estimate (7) for the general cavitation model including the problem considered, is established in Sec. 3.
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1.3. Optimization Problem. We determine the geometrical characteristic p0 of the required polygon P0

from a certain optimality condition. In problems of internal aerodynamics, the target functional is usually the
thrust at the optimized-nozzle exit.

We draw a semicircle K0 = {ζ |ζ + ε/4| < r0 = 1 − ε/4, Im ζ > 0} through the points t0 = −1 and
t∗ = (1− ε/2) ∈ (tn, tn+1), and denote by Γ0 = {r0 eiγ : 0 < γ < π} the preimage of the curve connecting the points
z0 ∈ P0 and z∗ = z(t∗) ∈ P1. The thrust functional is chosen in the form

F =

π∫

0

∣
∣
∣
dw

dz
(ζ)

∣
∣
∣

2

dγ = C

π∫

0

n−1∏

k=1

∣
∣
∣
1 − ζtk
ζ − tk

∣
∣
∣

2βk

dγ (ζ = r0 eiγ). (8)

The functional F (P0) has bounded derivatives of any finite order with respect to the arguments (βk, tj),
which enter explicitly because the integrand in (8) has no singularities (the points t0 and tn+1 do not enter the
product). According to [5], the solutions tj = tj(l, β) are also differentiable with respect to (li, βk). Therefore, the
functional F (P0) has an extreme point P ∗

0 [7, p. 106]:

sup
G
F (P0) = F (P ∗

0 ). (9)

We start the optimization for the case of a curved nozzle with increasing the number of the vertices of the
polygon P0 by introducing the notation Pm

0 = (z0, . . . , zm) (z0 = z0; zm = zn−1).
We seek the nozzle Λ ⊂ C1 in the class of piecewise smooth curves of finite length:

C1:
∣
∣
∣ ln

dz

dτ

∣
∣
∣ ≤M, |z(τ)| ≤M, τ ∈ [0, 1].

Here z = z(τ) is the parametric equation of Λ. To each given curve Λ, we assign the set of polygons converging
to it Pm → Λ. Then, as shown in [5, p. 168–170], the set of conformal mappings Zm: K → D that corresponds
to Pm

0 is uniformly bounded in the domain Kδ ≡ K \Qδ(tn, tn+1) [Qδ is a fixed δ-neighborhood (0 < δ � 1) of the
given points tn and tn+1 = 1]. This allows us to distinguish a convergent subsequence {Zmk(ζ)}, Zmk(ζ) → Z(ζ)
for mk → ∞, and the limit mapping Z: Kδ → Dδ transforms the segment [−1, tn−1] to the curve Λ. The behavior
of the mapping z = Z(ζ) in the neighborhood of Qδ is also described in [5].

The properties of the thrust functional F (Pmk
0 ) allow us to pass to the limit as mk → ∞ and to find the

limiting optimal curved nozzle Λ∗ ⊂ C1:

lim
mk→∞

sup
G
F (Pmk

0 ) = F (Λ∗). (10)

Theorem 1. On the set of simple finite polygons P0 ∈ G there exists an extreme point P ∗
0 of the functional

F (P0), i.e., equality (9) is satisfied. If condition (6) is satisfied, each extreme point of the functional F (P0) is

isolated.

In the class of curves Λ ⊂ C1, Λ = lim
mk→∞Pmk

0 , Pmk
0 ∈ G of finite length |Λ| ≤ M , M ≥ |zn−1 − z0| there

exists an optimal curved nozzle Λ∗ that satisfies relation (10).
As noted above, if condition (6) is satisfied, the solution T (P0) ∀P0 ∈ G of Eq. (5) is unique, and, hence, it

is also unique for the extreme point P ∗
0 of the functional F (P0), which implies that this point is insulated.

2. ACCOUNTING FOR GRAVITY

In the problem considered above, the condition q ≡ |dw/dz| = 1 on the free boundary L is replaced by
Bernoulli’s equation

q2 + 2gy = q2∞ + 2gh, (11)

where g is the acceleration of gravity, q∞ and h are the flow velocity and depth, respectively, at infinity down-
stream. This problem was first studied by Monakhov (1969) without invoking any smallness conditions on the flow
parameters [5, pp. 178–184]. The method used to solve this problem consisted of simultaneous approximation of
curved boundaries by polygons and linearization of boundary condition (11) in such a manner that it was satisfied
at a finite number of points on L. After the solvability of the thus obtained auxiliary problems was proved, the
solvability of the initial problem was established by passing to the limit.
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The scheme for solving the problem of heavy fluid flows is briefly described below.
2.1. Auxiliary Problem. Let the parameters a0 = q0q

−1
∞ , q0 = |dw/dz|z=z0 , and μ = h/h0 (h0 = Im z0)

be specified. The quantities q0, q∞, h, h0, and Q are sought together with the complex flow potential w = w(z).
The constants a0 and μ obey the natural constraints for any value of δ � 1:

0 < δ ≤ μ = hh−1
0 ≤ 1 − δ, e−2π −δ ≤ a0 = q0q

−1
∞ ≤ 1 − δ. (12)

The representation for dw/dζ from Sec. 1 is retained, and representation (2) is replaced by the following:

dz

dζ
= N0ω(ζ)

n−1∏

k=1

( ζ − tk
1 − ζtk

)βk

eM(ζ) . (13)

Here

M =
ζ2 − 1
π

π∫

0

ln [q−1
∞ q(γ)]

dγ

1 − 2ζ cos γ + ζ2
,

[q−1
∞ q(γ)]2 = 1 + 2gq−2

∞ [h− y(γ)],

where y = y(γ) is the required function [5, p. 180].
We partition the sought interval [h, h0] by the points

yk = h0 − k
h0 − h

m+ 1
(k = 0,m+ 1) (14)

and set zk = (xk + iyk) ∈ L. Let ζk = eiγk be the preimages of zk and qk = q(γk) and qm+1 = q∞. From
equalities (11) and (14), we obtain

q2k+1 − q2k = 2gh
1 − μ

μ(m+ 1)
, k = 0,m. (15)

We introduce the functions

q̃k(γ) = exp
(

pk+1
∞ +

cos γ − cos γk+1

cos γk − cos γk+1
pk

k+1

)

, γ ∈ [γk+1, γk] (16)

and in (13) we replace q(γ) by the quantity q̃(γ) = q̃k(γ), γ ∈ [γk+1, γk]. Then, by the construction, Bernoulli’s
equation (11) is satisfied at a finite number of points zk ∈ L, k = 0,m+ 1. To find the unknowns γk, we have the
system of equations

yk − yk−1

h
=

(1 − tn)2

π

γk∫

γk+1

(1 + ζ) sin θ(γ) dγ
|1 − ζ| |ζ − tn|2q̃k(γ)

, k = 0,m− 1, (17)

where θ(γ) = arg (dz̃/dγ); dz̃/dγ is defined by formula (13), in which q(γ) is replaced by q̃(γ).
2.2. A Prior Estimates. As in Sec. 1, the constants N0 and tn are fixed, and to determine the required

parameters tk (k = 1, n− 1) and γk (k = 1,m) in the auxiliary problem, we obtain system (5), (11) with the total
number of equations m + n + 1 [in Eqs. (5), dz/dt is replaced by dz̃/dt]. In this case, estimates (4) hold true for
the vector T = (t1, . . . , tn−1). We prove the same inclusion for the vector (γ1, . . . , γm) ∈ Rγ :

Rγ : γi − γi+1 > ε0 > 0, i = 0,m.

Because of the boundedness of |z0| and yk = Im zk, the convergence |z0 − zk| → 0 is possible only as
Re zk = xk → ∞. Then, the flow depth at infinity downstream is equal to h∗ = y0 − yk �= h, which contradicts the
initial assumption. Starting from some γp (1 ≤ p ≤ m), let γk → 0 (k ≥ p). Then,

|zp − zp−1| =
(1 − tn)2

π

∣
∣
∣

γp−1∫

γp

|1 + ζ| eiθ(γ) dγ

|1 − ζ| |ζ − tn|2q̃p−1(γ)

∣
∣
∣ ≡

∣
∣
∣

γp−1∫

γp

f(γ) dγ
sinγ/2

∣
∣
∣,

and, since |f(γ)| > 0 in the neighborhood γ = 0, the integral in the last equality diverges as γp → 0, i.e.,
|zp − zp−1| → ∞ as γp → 0.
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Thus, it is proved that |γk| > ε0 > 0 (k = 0,m). At the same time, if γk − γk+1 → 0, from system (17), we
obtain

1 − μ

μ(m+ 1)
=

(1 − tn)2

π

γk∫

γk+1

|1 + ζ| sin θ(γ) dγ
|1 − ζ| |ζ − tn|2q̃k(γ)

≤ γk − γk+1

a0 sin (γk+1/2)
→ 0,

which contradicts the condition μ < 1. Therefore, there exists ε > 0 such that γk − γk+1 > ε > 0 (k = 0,m ). The
latter circumstance provides for the satisfaction of the estimates

c−1
0 ≤ | eM(ζ) | ≤ c0 at ζ ∈ Dζ = {|ζ| ≤ 1, Im ζ ≥ 0}.

2.3. Solvability of the Problem. We consider the simple problem of fluid discharge from a straight-wall
nozzle P 0 = (z0, zn), requiring that Bernoulli’s equation be satisfied only at the jet discharge point z0 and at the
point zn+1 at infinity downstream.

The solvability of system (5), (17) corresponding to P 0 is easily established [5, p. 183].
In the equation of system (5), we introduce the parameters λ such that the polygon P = (z0, . . . , zn)

becomes P 0 as λ varies from unity to zero. In addition, we include the parameter λ in the boundary condition by
setting

qλ(γ) = λq̃(γ) + (1 − λ)q0(γ).

Here q̃(γ) corresponds to the problem for P , and q0(γ) = exp {[(1 − cos γ)/2] ln (q0/q∞)} to the problem for P 0.
Because the estimates dzλ/dζ corresponding to the polygons Pλ are uniform with respect to λ, we use the Leray–
Schauder fixed point theorem to establish the solvability of the corresponding system (5), (17) for any λ ∈ [0, 1].

Now, for an arbitrary simple polygonal nozzle P0 = (z0, . . . , zn−1), we can pass to the limit as m → ∞,
because of which Bernoulli’s equation (11) is satisfied on the entire free boundary L [5, p. 184].

2.4. Optimal Polygonal Nozzle. We seek P0 = (z0, . . . , zn−1) from the maximum condition for the thrust
functional F (P0) specified by formula (8), in which the factor e−2 Re M(ζ) needs to be added in the integrand. These
changes in the form of the thrust functional F (P0) do not influence its differential properties, which (as in Sec. 1)
allows us to find an extreme point P ∗

0 that satisfies equality (9). By passing to the limit from the polygons to the
curve Λ ⊂ C1 (Pmk

0 → Λ), we find the optimal curved nozzle Λ∗ that satisfies relation (10).
Theorem 2. In the problem of heavy-fluid discharge from a polygon nozzle P0 ∈ G(δ) there exists an

extreme point P ∗
0 of the thrust functional F (P0) that satisfies relation (9). By passing to the limit from the

polygons to the curved boundaries, we also find the optimal curved nozzle Λ∗ ⊂ C1 that satisfies equality (10).

3. OPTIMAL CONTROL OF CAVITATION

In applied hydrodynamics, the drag of bluff bodies is reduced using artificial cavitation methods. Cavitators
are produced so that the body is inside the cavern formed behind the cavitator; air is frequently injected into the
cavern; special devices produce flow inside the cavern to equalize pressure, etc. This leads to the implementation of
various well-known cavitation models: Kirchhoff, Ryabushinskii, Efros, Efros–Joukowski, Joukowski–Roshko, etc.
[5, p. 174–178].

Important applied problems are problems of optimal control of cavitation (sizes or drag of the cavern) by
varying the cavitator shape and by pressure redistribution inside the cavern.

3.1. Jet Problem. We consider the general free-boundary hydrodynamic problem formulated and studied
in [5, Ch. 4, Sec. 2], which includes all basic cavitation models. Let a domain D be bounded by a free surface L
on which |dw/dz| = 1, and by a simple polygon P = (z0, . . . , zn+1). In this case, the domain D can contain the
flow stop and bifurcation points Ai and Cm [(dw/dz)(Ai) = (dw/dz)(Cm) = 0] and the points Bj at which the
vortices and sources [(dw/dz)(Bj) = ∞] are located. Then, the derivatives of the conformal mappings of the upper
half-plane E = {ζ: Im ζ > 0} in the domain D and D∗ are written as [5, 8]

dw

dζ
= N0ω(ζ), ω =

∏

i,j

ζ2 − |ai|2
ζ2 − |bj|2

∏

m,s

ζ − cm
ζ − σs

,
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dz

dζ
= N0ω(ζ)χν(ζ)Π(ζ) eM(ζ), Π =

∏

k

χβk

k .

(18)

Here ai, bj, and cm are the specified preimages of Ai, Bj , and Cm, respectively, σs are the fixed preimages of the
infinite vertices w(σs) ∈ ∂D∗,

χk = [(1 − ζ2)1/2(1 − t2k)1/2 + 1 − ζtk](ζ − tk)−1, χ = (1 − ζ2)1/2 + 1,

M = − (1 − ζ2)1/2

πi

∫

|t|>1

ln |Π(t)χν(t)| dt
(1 − t2)1/2(t− ζ)

,

tk ∈ (−1, 1) are the required preimages of the finite vertices P (t0 = −1 and tn+1 = 1), and ν is an integer. The
parameters N0 and tn are specified, and the vector T = (t1, . . . , tn−1) is determined from Eq. (5), whose solution
satisfies estimates (4) [5].

By the construction, the function dz/dζ in the form (18) satisfies the boundary-value problem

arg
dz

dt
= πθ̄(t), |t| < 1,

∣
∣
∣
dz

dt

∣
∣
∣ = |N0ω(t)|, |t| > 1, (19)

where θ̄(t) = δ̄k, t ∈ [tk, tk+1]; δ̄kπ is the slope of the kth side of the polygon P to the Ox axis.
3.2. Local Uniqueness of the Solutions. According to the continuity method, to prove the uniqueness

of the solution T = (t1, . . . , tn−1) of Eq. (5) in the general jet problem (see Subsec. 3.1), it is sufficient to establish
that its Jacobian Dl/DT differs from zero because in the simple case where the polygon P is a segment of the
straight line, the uniqueness of the solution is known [5].

We associate the general jet problem with an auxiliary Kirchhoff flow, assuming that

dW

dζ
= N1ζ

(

≡ Q0(ζ)
dw

dζ

)

,
dZ

dζ
= N2χ(ζ)Π(ζ)

(

≡ Q(ζ)
dz

dζ

)

. (20)

Here W : E → Ω∗ and Z: E → Ω are conformal mappings that correspond to the Kirchhoff problem (20) in some
domains Ω and Ω∗; the derivatives dw/dζ and dz/dζ are given by formulas (18) for the initial domains D∗ and D.
Relations (20) for the specified functions Q0(ζ) and Q(ζ) define the conformal mappings W = W (w) and Z = Z(z)
and the domains Ω∗ = W (D∗) and Ω = Z(D).

The function Q(ζ) is found by comparing (20) and (19):

Q−1 = N2(N0)ω(ζ)χν−1(ζ) eM(ζ), N2 = const > 0. (21)

We note that ω(ζ) and χ(ζ) do not depend on T = (t1, . . . , tn−1), and M(ζ) is a function only of a fixed constant N0.
For polygons P ⊂ G, the function Q(ζ) in (21) possesses the properties

argQ(t) = 0, |t| < 1, | lnN2Q(t)| ≤M <∞, |t| <∞.

Thus, arg (d(Z − z)/dt) = 0, |t| < 1, and, hence, conformal mapping Z = Z(z) transforms a polygon P to a
polygon Z(P ) with parallel sides and sides lengths:

Lj =

tj∫

tj−1

|Q(t)|
∣
∣
∣
dz

dt

∣
∣
∣ dt, j = 1, n− 1. (22)

We fix the vector T ⊂ R, and thus the polygons P and Z(P ). The initial point Z(−1) = 0 of the polygon P (Z)
is specified, and at the end point, we set Z(1) = 1, which can be achieved by extending the mapping Z(ζ). We
calculate the variation δLj(T ) through the variation δT . For system (22), which corresponds to Kirchhoff flow, if
condition (6) is satisfied, the equalities δZ(±1) = 0 imply that δZ = 0, and, hence, δT = 0 [5, pp. 153–158]. Let us
return to system (5), for which δlk = 0 (k = 1, n− 1) and, as shown, δT = 0, which implies that (Dl/DT )(T ) �= 0.
Thus, we established the topological similarity principle for problems of parameters for the general jet flow and the
Kirchhoff flow.

Theorem 3. The solutions T = (t1, . . . , tn−1) of Eq. (5), corresponding to the general jet problem for a

simple polygon P ⊂ G, subject to conditions (6), are locally unique, i.e., Dl/DT �= 0. If there exists a polygon

P 0 ⊂ G for which the solution of Eq. (5) is unique, it is also unique for any P ⊂ G.
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3.3. Convergent Algorithm of Numerical Solution of the Problem of Parameters. We take the
segment of the straight line P 0 that connects the ends z0 and zn+1 of the polygon P , fix the points z0

k (k = 1, n)
on this segment, and construct the set of polygons {P ν}, where ν = (ν0, . . . , νn+1) and νk ∈ [0, 1], that includes P 0

and the initial polygon P = P 1 [6]. We introduce the geometrical characteristic pν = (lν , αν) of the polygon P ν

[lν = (lν1
1 , . . . , l

νn−1
n−1 ) is the side length vector P ν , α = (αν0

0 , . . . , α
νn−1
n−1 ), and ανk

k π are the angles P ν at the points
zνk

k , k = 0, n− 1 ]. Equation (5) is represented in the following equivalent form:

u = F (u, p), Fk = ukl
−1
k gk(T, α), k = 1, n− 1. (23)

Here uk = tk−1−tk−2, k = 2, n; p = (l, α). We consider two polygons (Pλ, Pμ) ∈ {P ν} with the close characteristics

0 < |pλ − pμ| ≤ q � 1

and write the following equation for the perturbations v = uλ − uμ [8]:

v = Φ(u, q). (24)

For the Kirchhoff and Ryabushinskii models, it is shown in [6] that if the condition |Dl/DT | ≥ δ > 0 is satisfied,
there exists a fixed value of the parameter q = q0(δ) > 0 such that the perturbation operator Φ(u, q0) is compressing
on a certain set S ⊂ R

n. This allows us to divide the process of finding the solutions u = (u1, . . . , un−1) of Eq. (23)
into a finite number of cycles, in each of which Eq. (24) for perturbations can be solved using simple iterations.

This convergent algorithm of solving Eq. (23) is called the cyclic iteration method (algorithm). According
to the inequality Dl/DT �= 0 proved in Theorem 3, the cyclic iteration method is inappropriate for the general jet
problem.

Theorem 4. Equation (23) for the parameters corresponding to the general jet problem can be solved using

the convergent cyclic iteration algorithm.

3.4. Optimization. In external aerodynamic problems, the drag of a polygon P ∈ G(δ) in flow is used as
the target functional:

F0(P ) =

1∫

−1

∣
∣
∣
dw

dz
(t)

∣
∣
∣ dt = N0

1∫

−1

∣
∣
∣χνΠeM

∣
∣
∣

−1

dt.

We set F (P ) = [F0(P )]−1 and seek sup
G
F (P ). The functional F (P ) is continuously differentiable with respect

to the explicitly included parameters tk and βj and completely obeys the conditions of Theorem 1.

4. OPTIMIZATION IN THE CLASS OF CURVED OBSTACLES

We consider the problem studied in Sec. 3 for curved obstacles without representing them as convergent
sequences of polygons. For this, we use the method employed in [9] to filtration problems.

4.1. Curved Boundary. We construct a certain Lyapunov curve Γ(μ) ⊂ Cα+1 (α > 0) that approximates
the polygon P so that the derivative dz/dζ of the conformal mapping z: E → D(Γ), ∂D(Γ) = Γ ∪ L can be
represented explicitly in the form of (2), where μ > 0 is the approximation parameter. We introduce the following
notation: t±k = tk ± rk, rk(μ) = μ inf {(tk − tk−1), (tk+1 − tk)}, k = 1, n+ 1, 0 < μ ≤ 1/3, t±0 = t0 = −1,
t−n+1 = tn+1 = 1, Δk = [t−k , t

+
k ], and Δ+

k = [t+k , t
−
k+1]. We consider the function θ(t) = θ̄(t) − 1 that satisfies the

conditions θ(t) = δkπ (t ∈ Δ+
k and θ = 0; |t| > 1):

θ = [δk(t− t−k ) + δk−1(t+k − t)]|Δk|−1 ≡ θk(t), t ∈ Δk.

Here δk = δ̄k −1. The function θ(t, μ) (|t| < 1) constructed here is continuous and is uniformly bounded irrespective
of the quantities (tk+1 − tk) ≥ 0 (k = 0, n) and |θ| ≤ sup

k
|δk|.

We consider the function

Πθ(ζ) = (1 − ζ2)−1/2 exp
(

1∫

−1

θ(t, μ) dt
t− ζ

)

,

which is the derivative of the conformal mapping
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Z =

ζ∫

−1

Πθ(ζ) dζ, Z: E → D(Γ), Γ(μ) = Γ ∪ P0 ∪ Pn+1.

In this case, the domain D(Γ) is limited by a certain approximating curve Γ(μ) with slope πθ(t) of the tangent to
the Ox axis and by the half-lines P0 = (z0,∞) and Pn+1 = (zn+1,∞). Calculating the Cauchy type integral in
the representation of Πθ, we obtain the following expression for the function Πθ(ζ), which is accurate to within the
extension constant:

Πθ = (1 − ζ2)−1/2
n∏

k=0

( t+k − ζ

t−k − ζ

)γk(ζ)( t−k+1 − ζ

t+k − ζ

)δk

.

Here γk = (ak + bkζ)|Δk|−1 (ak = t+k δk−1 − δkt
−
k and bk = δk − δk−1; k = 1, n ), γ0 = 0, t±0 = t0 = −1,

t−n+1 = tn+1 = 1, and |Δk| = (t+k − t−k ) (k = 1, n).
By the construction, θ(t, μ) → δk and t ∈ [tk−1, tk] as μ → 0 and, hence, the curve Γ(μ) converges to the

specified polygon P , and the derivative (dzθ/dζ)(μ) of the conformal mapping zθ: E → D(Γ) is represented as (18),
in which Πθ and Mθ should be substituted for Π and M .

Similarly to the problem for the polygon, we consider Eq. (5) for the vector T = (t1, . . . , tn−1), in which

gk(T, β) =
∣
∣
∣

tk∫

tk−1

dzθ

dt
dt

∣
∣
∣ = |zk − zk−1|, k = 1, n− 1. (25)

The definition of the curve Γ(μ) includes the specified geometrical characteristic (l, β) [l = (l1, . . . , ln) and
β = (β0, . . . , βn+1)] of the basic polygon P , with which Γ(μ) coincides for μ = 0. It is assumed that the vector (l, β)
obeys the nondegeneracy conditions (3) for the polygon P .

The conformal mapping zθ: E → D(Γ) transforms tk (k = 0, n+ 1) to the points zθk(μ) ∈ Γ(μ) — the
vertices of a certain polygon Pθ(μ) approximated by the curve Γ(μ); the lengths of the sides Pθ(μ) and P coincide,
and the external angles πβk(μ) and πβk, generally speaking, take different values.

An arbitrary vector T substituted into (5) corresponds to a certain curve Γ(μ, T ) approximating the poly-
gon P (μ, T ). Equations (5) are the conditions of coincidence of Γ(μ, T ) and Γ(μ), and, hence, the conditions of
coincidence of P (μ, T ) and P (μ).

4.2. Solvability of the Problem. After the integration segments in (25) are reduced to the segment [0, 1]
similarly to [5], it is established that the functions gk(T, β) are continuously differentiable with respect to ti (i =
1, n− 1) and for the vector T , estimates (4) are valid (see also [9]).

Since the operator g: R
n → R

n−1 [g = (g1, . . . , gn−1)] in (25) is continuously differentiable with respect to tk
on the set T ∈ R and does not have stationary points on its boundary, then under the Schauder theorem, Eq. (25)
has at least one solution. Hence the following theorem is proved.

Theorem 5 (existence theorem). Let the base polygon P be nondegenerate. Then, for the curve corre-

sponding to it Γ(μ), Eq. (25) has at least one solution T = (t1, . . . , tn−1) that belongs to the set R determined

in (4).
The optimization problem is studied in the same way as in Sec. 3.
This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00131), a grant of
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